Comparison Test: If |an| ≤ |bn| for all n, then if Σ|bn| converges, Σ|bn| converges and Σ|an| ≤ Σ|bn|. Stated as the contrapositive, if Σ|an| diverges then Σ|bn| diverges.
Ratio Test: Let L = lim |(an+1)/an| (possibly infinite). If L < 1 then Σ|an| converges. If L > 1 then Σan diverges. It's anybody's guess if L = 1.
Root Test: Let L = lim sup |an|1/n (possibly infinite). If L < 1 then Σ|an| converges. If L > 1 then Σan diverges. Again, all bets are off if L = 1.
No comments:
Post a Comment